Configuration Spaces and Limits of Voronoi Diagrams
نویسندگان
چکیده
The Voronoi diagram of n distinct generating points divides the plane into cells, each of which consists of points most close to one particular generator. After introducing ‘limit Voronoi diagrams’ by analyzing diagrams of moving and coinciding points, we define compactifications of the configuration space of n distinct, labeled points. On elements of these compactifications we define Voronoi diagrams.
منابع مشابه
Mobile Robot Online Motion Planning Using Generalized Voronoi Graphs
In this paper, a new online robot motion planner is developed for systematically exploring unknown environ¬ments by intelligent mobile robots in real-time applications. The algorithm takes advantage of sensory data to find an obstacle-free start-to-goal path. It does so by online calculation of the Generalized Voronoi Graph (GVG) of the free space, and utilizing a combination of depth-first an...
متن کاملIncremental Updates of Configuration Space Representations for Non-Circular Mobile Robots with 2D 2.5D or 3D Obstacle Models
This paper presents techniques to incrementally update collision maps, distance maps, and Voronoi diagrams in the configuration space of non-circular mobile robots. Compared to previous work, our approach only updates the cells affected by changes in the environment. Thus, it is applicable in large workspaces and in the presence of unknown or moving obstacles. The c-space collision maps allow f...
متن کاملCapacity-constrained Voronoi Diagrams in Finite Spaces
A Voronoi diagram of a set of n sites partitions a finite set of m points into regions of different areas, called the capacities of the sites. In this paper we are interested in Voronoi diagrams in which the capacities are given as constraints. We compute such capacity-constrained Voronoi diagrams in finite spaces by starting with an arbitrary partition that fulfills the capacity constraint wit...
متن کاملBregman Voronoi Diagrams: Properties, Algorithms and Applications
The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define many variants of Voronoi diagrams depending on the class of objects, the distance functions and the embedding space. In this paper, we investigate a framework...
متن کاملThe Geometry of Minkowski Spaces — A Survey. Part II
In this second part of a series of surveys on the geometry of finite dimensional Banach spaces (Minkowski spaces) we discuss results that refer to the following three topics: bodies of constant Minkowski width, generalized convexity notions that are important for Minkowski spaces, and bisectors as well as Voronoi diagrams in Minkowski spaces.
متن کامل